Monday, May 22, 2017

Can bad fashion save the icecaps?



With rapid melting in the Arctic, and potential glacial instability in Antarctica. the planet’s present cryosphere is in a spot of bother. The root cause of this is warming from the heat trapped by greenhouse gasses, mostly CO2. But while many suggestions have been made for reducing CO2 output, as yet there are relatively few mothods for capturing those emissions which are still occurring. And with international agreements lacking enforcement mechanisms, a new push for Coal in the US, and decades of record rates of emissions growths, humanity clearly needs someone to police the worlds emissions. And we don’t need any old police. We need fashion police.

Although many proposals have been made for finding ways to prevent our hunger for fossil fuels from ruining the atmosphere, not nearly enough of these strategies have included the use of tacky clothing. And yet, the potential for horrific fashion statements to save the world should not be underestimated. The reason for this is that ultimately, the easiest way to scrub carbon dioxide from the atmosphere is to react it with an alkali or alkali earth oxide, thereby forming a carbonate  mineral. While silicate weathering will do this naturally over a 50-100kA timescale, we can’t really afford to wait that long. Roasting carbonates obviously won’t accomplish anything, since that simply makes the alkali oxides available by releasing CO2. However, there are alternatives.

One way to generate an effective carbon dioxide scrubber is to split salt (from ocean water) into its component sodium and chlorine. The sodium will rapidly (on a geologic timescale) oxidize, hydrate, and carbonate, forming NaHCO3. This should be reasonably effective, so long as we can sequester the chlorine that is produced as a byproduct. And here is where the tacky clothes come in. During the latter part of the 20th century, outrageous costumes were constructed out of the polymer polyvinyl chloride. If we can simply manufacture enough disco pats, fake leather jackets, and not-so-Sunday dresses, that will sequester the chlorine from salt electrolysis in the world’s wardrobes, so that the sodium can be used for atmospheric CO2 drawdown.

Doing a bit of math here, with annual emissions of about 29 billion tons of CO2, we will need about 15 billion tons of Na to scrub our emissions. This requires approximately 55 billion tons of PVC to store the chlorine left over from the salt decomposition (powering the electrolysis is left as an exercise for the reader). Luckily, due to the large world population, this works out to only about 8 tons of PVC per person per year, or about 21 kg of PVC per day.

None of the PVC outfits I can find for sale on the internet at this hour appear to contain 21 kg of material. They are generally a little bit flimsier than that. And even with a new steampunk, burlesque, gothic, and disco outfit every day for every man, woman, and child on Earth, we are still looking to be short by a factor of 50. Buying 21 kg of new PVC outfits a day would necessitate a costume change every 7 minutes. Luckily, there are other things which PVC can be made into.

For example, the credit cards used to purchase PVC outfits by people too brazen to stoop to cash are made of PVC. And while they only weigh a few grams each, most people do have a few. Similarly, the music to which PVC clad people traditionally dance comes from an archaic form of grooved PVC platter known as a “record”. Buying 140 LP records a day will put all of the world’s citizens at their PVC quota without having to wear anything at all.

So fear not, reader. There is hope. with enough old time music and garish clothing, anything is possible.

Tuesday, May 09, 2017

Geosonnet 50



When protolith components decompose
Some isolated grains are left behind
Hydration takes their comrades, spinel knows
Not why it’s been preserved. So can its mind
Be trusted to reveal the deepest Earth
The mantle which exists beneath the crust?
Survivor guilt clouds memories of birth
In which trace elements must earn our trust.
The Tonga Trench serpentinites preserve
Hydration from minimal to complete
Survivor mantle phases there conserve
The elements closed min’rals don’t excrete.
   As long as these survivors can be found
   They will remember stories to expound.



Other geosonnets: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


Saturday, April 29, 2017

Geosonnet 49



From gutters, one can’t always see the stars
The fog, the rain, life’s tedium can shade
So should the stardust gravitate to Earth
It could collect wherever dreams may fade.
But like the needle, tightly stacked with hay
These grains of hope are difficult to find
Accumulate detritus, day to day
Our eye for stellar hope goes dim, then blind
But careful observation does reveal
That space dust is detectable in town
The sampled gutters no longer conceal
That which from asteroids to Earth came down.
   Thus steadfast pessimists must now beware
   That specks of heaven settle everywhere.



Other geosonnets: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49




Wednesday, March 22, 2017

Routine science turns clever- laser ICP vs SHRIMP analysis of Archean detrital zircons


So, last year I published a Geology paper. It is summarized in Geosonnet 42; see link therein to the paper itself. As it turns out, the paper deals with Archean uranium mobilization and the sedimentary history of carbonado diamond. But what the paper doesn’t say is that I wasn’t actually trying to do that. More professional researchers than I might know how state in their articles that it was all just a lucky coincidence, but I don’t know how to squeeze that into a short format journal.


What actually happened is that the second author and I realized that we had different pieces of the puzzle which, with the help of some old Japanese data, could be pieced together for a coherent story. So hey, "write it up."  Most of my part of the puzzle was unpublished bits and pieces from my PhD and post doc 15+ years ago, but the SHRIMP data was actually less than a year old, as I had collected it for an entirely different reason.

Back when I was working at ASI, which had just bought the Resolution laser ablation line from Resonetics, a few of us started looking at how the SHRIMP and laser products could best compliment each other. One of the things we experimented with was controlling the SHRIMP with a version of the laser control software. Another thing we wanted to know was whether there was any advantage to using the SHRIMP for detrital zircon provenance studies, so I pulled out my old PhD zircons, remounted them with modern standards, and we programmed a customized version of GEOSTAR to automatically rerun the same zircons (if they hadn’t been blown up) to compare the results. Of course, the laser data was old, and the SHRIMP was trying to make analyses next to laser holes (which distort the extraction field, due to the unfortunate tendency of holes not to be flat), but it generally worked, and the data is tucked away deep in the supplementary section of the paper.

Since there are analytical geochemists who occasionally read this blog, but might not think to look for microbeam comparisons in the appendix of a diamond radiation defect luminescence paper, I thought I’d mention it, and put up some plots that got culled due to space requirements.

The short answer is that fully metamict zircons (like half of the Tombador grains) are open system with either technique, but for zircons that are only a little bit metamict (most of the Jacobina zircons), the smaller ion probe spot and better 204Pb backgrounds improve data quality. Anyone who is interested is welcome to download the Data Repository data (it’s all there) and ask.

Figure 1 (See data repository for full version): Tombador zircon analyses with SHRIMP (red) and laser ICPMS (yellow). The SHRIMP data are, in general, a little more concordant, but there isn’t much in it.

Figure 2 (See data repository for full version): Jacobina zircon analyses with SHRIMP (red) and laser ICPMS (yellow). For this sample, the SHRIMP data are substantially more concordant.

Figure 3:  Probability distribution curves for Tombador zircons analysed by SHRIMP (purple) and laser (Red).

Figure 4:  Probability distribution curves for Jacobina zircons analysed by SHRIMP (tan) and laser (Red). Note that laser peaks are generally broader and offset to younger ages due to Phanerozoic Pb loss.

Tuesday, March 07, 2017

Geosonnet 48



The garden in which life evolved from slime
Did not have apples, naked girls, delights.
Although the details have been lost to time
clay seems more likely, or serpentinites.
Hydrated mantle min’rals do not tempt
But their kinetics none-the-less intrigue
Relationship twixt rock and sea attempts
at understanding help if we know speed.
The magnetite which serpentine expels
Contains trace actinides which will decay.
The helium which in the crystal dwells
Gives cooling time and late stage growth away.
Three million years ago, when Lucy ran
The final Greek tectonic stretch began.



Other geosonnets: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Thursday, December 08, 2016

Geosonnet 47



For two times in a hundred million years
The Earth froze solid, snowball world in space.
The pitcher stretched, the batter’s frozen tears
Held metazoan terror on his face.
If frozen oceans struck for a third time,
While animals were trying to evolve,
Could they survive anoxic paradigm,
A sea ice-covered hunger games to solve.
The timing of the third ice age is key,
And CA-ID-Tims unlocks the truth.
The Gaskiers ice age ended suddenly
Timing constrained by isotopic sleuth.
  A modern ice age, mostly at the poles?
  Or thaw too swift for carbonate controls?


Other geosonnets: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

Saturday, November 26, 2016

Happy Thanksgiving

I am cooking a Thanksgiving feast again this year. Last year, I was in Japan, so I ate toxic fish with the nerve agents cut out by an overworked chef instead of cooking a Turkey. When I was a kid, Thanksgiving was at Grandma’s every year. We would play with the cousins and uncles and aunts, and Mom would help Grandma, and Granddad would tell stories about anything from fishing to the War in the Pacific, and we would eventually eat, and then play games or watch TV until we were too tired to do anything but sleep. After my Uncle died, my Grandparents moved farther away, and it was generally just our nuclear family at home until I finished college and headed off to make my way in the world and get as far from New York as possible. My first Thanksgiving away from family was 20 years ago, at the house of a guy I met in field camp who kindly took me in with a bunch of other recent arrivals to silicon valley. At the time I thought that was strange, but two years later I found myself cooking Lasagna in an apartment in Northeastern Brazil, with a woman who was kind of coming onto me but was the ex-wife of the guy I was working with and the ex-daughter in law of the people who were putting me up. My Portuguese was not really good enough to talk my way out of the trouble I somehow avoided, but a couple years later in Australia I met my wife-to-be at another Thanksgiving dinner hosted by another ex-pat PhD student from Arkansas. And somehow, over a decade and a half later, I have a family, a job I can ride my bike to, a house, and a wife who still miraculously puts up with me, despite my lifelong habit of biting off more that I can chew, not succeeding at anything, but somehow finding a continual series of third doors that miraculously allow me to avoid total failure. Despite my constant feelings of inadequacy and dread that I have wasted my potential and lost my way, I seem to somehow be doing OK. I have a lot to be thankful for, and I hope that you all have the same. Have a wonderful thanksgiving.

Saturday, November 19, 2016

Molten metal metamorphosis


The Australian Aluminium smelting industry is having a rough time. Built to utilize electricity from Australian coal from the 1960’s through the 1980’s, our smelters are ill equipped to deal with the migration of the Aluminium industry to a rapidly industrializing China or cheap low-carbon energy areas such as Iceland or New Zealand. As a result, the Kurri Kurri smelter closed in 2012, the Point Henry smelter closed in 2014, and the future for the Portland smelter is currently uncertain, with the contract for electricity due to be renegotiated this month.


At the same time, Australia is lagging the rest of the developed world in the transition to low emissions electricity. Although certain jurisdictions, like South Australia, are making progress, the fragile nature of the grid connections and the intermittent nature on renewable energy is slowing its uptake, and potentially contributing to supply instability, as was seen during this winter’s South Australian storm.

The production of aluminium metal requires a huge amount of electricity. An aluminum smelter basically consists of a huge tub of molten salt, from which the enormous electrical currents basically force the electrons onto aluminum ions, depositing them on the cathode atom by atom at a rate that allows several tons of production per day.
 
As a result, aluminium smelters are typically located in areas where there is a large, cheap supply of electricity. Traditionally these have been areas of hydroelectric power, or in Australia’s case, cheap open cut thermal coal. With coal getting more expensive, and with concerns over the impact of CO2 production on the climate, these coal-powered smelters are finding it harder to compete in high wage countries. So Australia has facilities which are designed to take a substantial proportion of the energy grid’s electricity, which are getting closed down just as the requirement for storage of large amounts of variable renewable energy is appearing.

One proposed solution of the “storage problem” is the use of a new technology known as the liquid metal battery. Like the aluminium smelting process, the liquid metal battery consists of a molten salt, which can have ions driven out of it to the anode and the cathode when power is applied. Unlike aluminium, the anode is a base metal instead of graphite, so instead of oxidizing the anode and making CO2, the metal is deposited. This allows the battery to discharge by dissolving the anode and cathode back into the molten salt. So if aluminum smelters are going obsolete in areas which are in desperate need of battery storage, it seems like modifying the smelter to store energy is a option worth at least considering.

There are technical issues, of course. An industrial Hall-Héroult cell is the size of a city bus, and a smelter contains lots of them. The liquid metal technology is being developed by a small company, Ambri, which seems to be starting small (like bottlecap scale), and scaling up. So there is a bit of a gap between the emerging battery technology and the aging smelter technology. But it is in everybody’s interest to bridge it.

Ambri is trying to raise cash and start production. South Australia is still investigating their state-wide blackout.  Alcoa and Hydro have two shuttered smelters which they need to remediate or repurpose, and Portland has 11% of its population working at the smelter. In addition, Boyne Island and Tomago are supposedly facing similar market pressures.

Portland would be a particularly useful place for a pilot project, since the smelter is still operating, even though the pain of closing a big industrial center in a small isolated town looms. It is also located in prime wind power country, on the Victoria / South Australia border, close to the interconnector. So it would be nice if the union, the council, the state and federal governments, and the industry groups could work together to see if there is a solution that benefits everybody.

As for Kurri Kurri and Port Henry, the Kurri Kurri remediation plan comment period closed in August, but Port Henry is still open, even though the last public hearing was last week.Thus the rushed, not completely researched blog post.